

Foro Biogás en México

Introducción

Adalberto Noyola

Presidente Consejo Nacional de Biogás A.C. Investigador Instituto de Ingeniería UNAM

> 26 noviembre 2019 Torre de Ingeniería UNAM Cd de México

Biogás

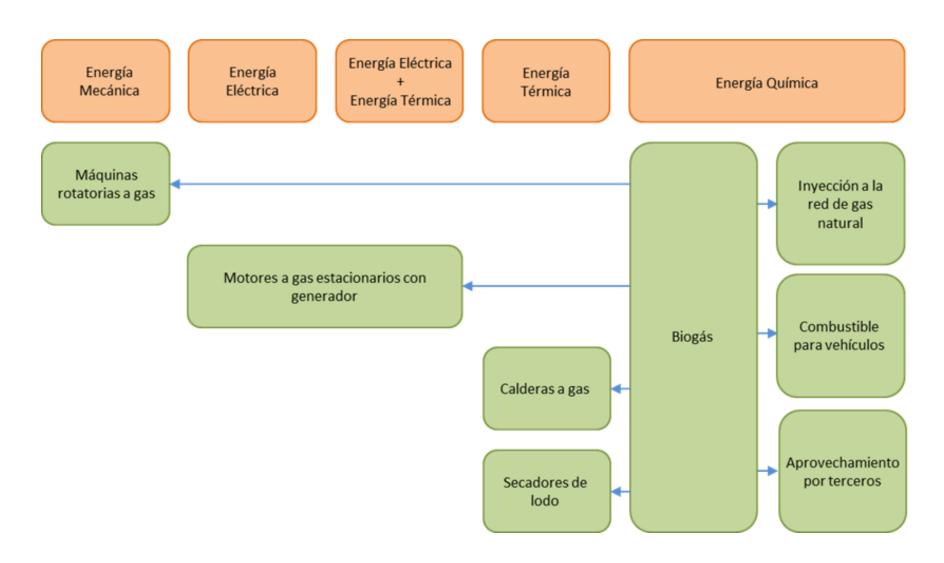
- ✓ El biogás se genera por la digestión anaerobia de materia orgánica en digestores de lodos y residuos de diverso origen. También en rellenos sanitarios; potencial para aguas municipales
- ✓ Composición variable de metano, dióxido de carbono y otros gases dependiendo de la fuente de origen:

Componente	Concentración
Metano (CH4)	50-75 %(vol)
Dióxido de carbono (CO2)	25-45 %(vol)
Vapor de agua (H2O)	2-7 %(vol)
ácido sulfhídrico (H2S)	20-20.000 ppm
Nitrógeno (N2)	< 2 %(vol)
Oxígeno (O2)	< 2 %(vol)
Hidrógeno (H2)	< 1 %(vol)

- ✓ El metano **es inodoro**. Lo que usualmente da mal olor al biogás es el contenido de sulfuro de hidrógeno (H₂S)
- ✓ El metano es un gas combustible, que puede utilizarse como fuente de energía para generar vapor de agua, electricidad y calor en una máquina de cogeneración o energía mecánica en motores.
- ✓ Asociado al manejo (aprovechamiento) de residuos orgánicos.

BIOGÁS: Equivalencia con otros combustibles

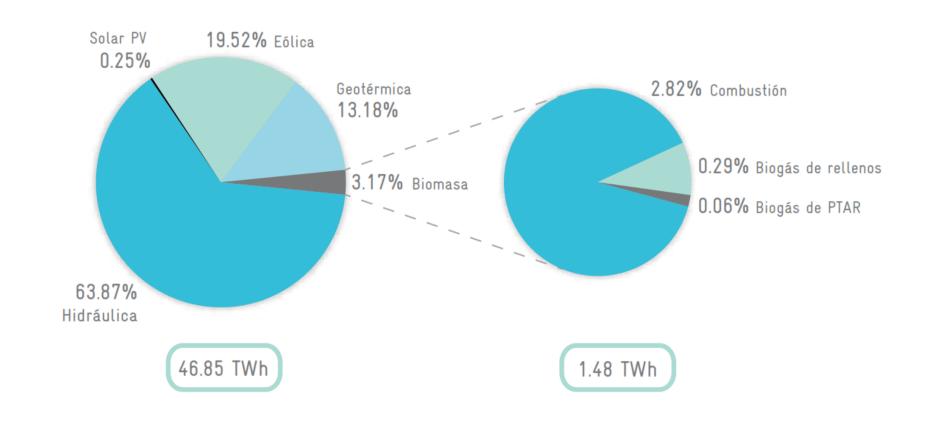
COMBUSTIBLE	MJ.kg ⁻¹	MJ.Nm ⁻³	kWh.Nm ⁻³	EQUIVALENCIA CON EL METANO
Metano	50.0	35.9	10.0	1.0
Gas natural	45.1	31.8	8.8	0.9
Biogás típico (60% CH ₄)	30.0	21.5	6.0	0.6
Butano	45.7	118.5	32.9	3.3
Propano	46.4	90.9	25.2	2.5
Metanol*	19.9	15,900	4,415.4	442.9
Etanol*	26.9	21,400	5,942.8	596.1
Gasolina*	45.0	33,300	9,247.4	927.6


(*) MJ.m⁻³ y kWh.m⁻³

Observaciones: Nm³: volumen y condiciones normalizadas de temperatura y presión: 0ºC y 1 atm.

Fuente: Adaptado de Constant et al. (1989) apud Noyola et al. (2006) y Lobato (2011).

OPCIONES PARA GENERAR ENERGÍA DE BIOGÁS


Cadena de valor amplia y diversa

Biogás, ¿producto o subproducto?

- El biogás se produce a partir de residuos orgánicos
- Es un subproducto del proceso de manejo de residuos líquidos o sólidos, con fines de protección ambiental
- Su producción está supeditada al grado de cumplimiento con la normativa ambiental del país
- El entorno global hacia la sustentabilidad y la reducción de emisiones GEI ofrece un nuevo impulsor al biogás
- Desarrollar la cadena de valor de la producción y aprovechamiento de biogás en México
- Nueva connotación al concepto de scavenger

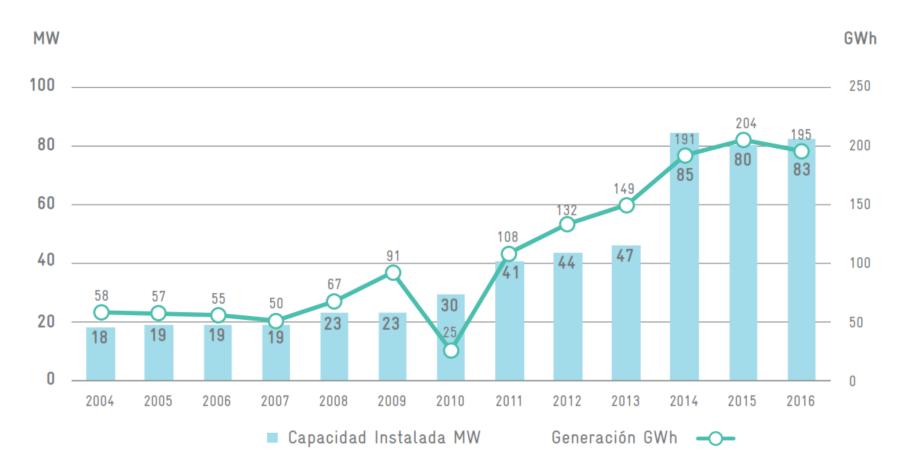

CONTRIBUCIÓN (MARGINAL) DEL BIOGÁS A LA ENERGIA RENOVABLE EN MÉXICO

GRÁFICO 3 Contribución de los Residuos Sólidos Urbanos (RSU) a la energía renovable en México (2015) en TWh.

GENERACIÓN ELÉCTRICA A PARTIR DE BIOGÁS EN MÉXICO

GRÁFICO 4 Capacidad instalada y generación bruta a partir de Biogás, 2004-2016.

En 2016: siete rellenos sanitarios y ocho PTAR. Potencial generación de 8400 GWh/año con biogás a partir de 20 millones de toneladas anuales de residuos orgánicos municipales.

Cobertura de tratamiento de aguas residuales en México (2017)

2526 Plantas de tratamiento municipales

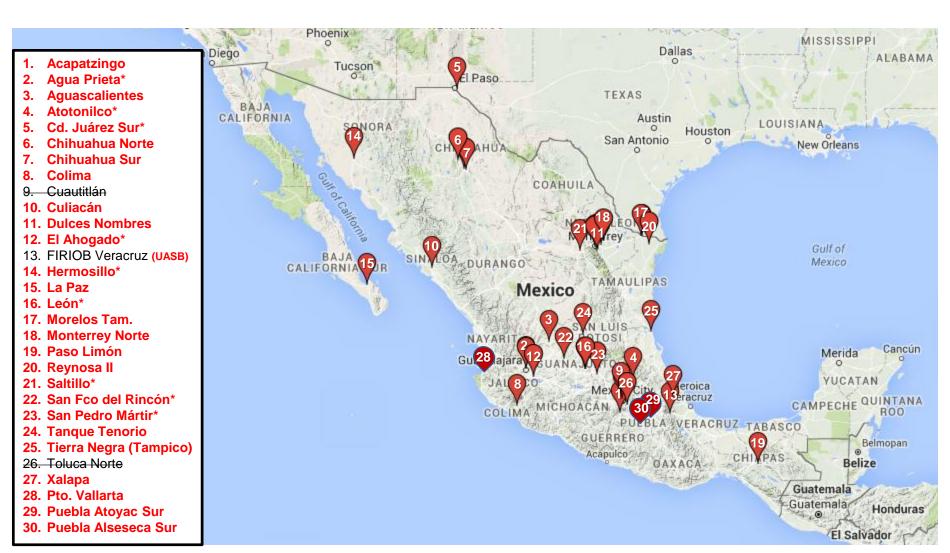
Tratamiento de aguas residuales municipales en

Caudal colectado: 215 m³/s*
Caudal tratado: 136 m³/s
*Caudal total generado: 235 m³/s

Aguas residuales industriales

Total: 218 m³/s

Tratado: 84 m³/s (39%)


3025 plantas de tratamiento

CONAGUA (2018)

Caudal tratado:

53% Lodos activados17% Dual (percolador-lodos activados)10% Lagunas estabilización

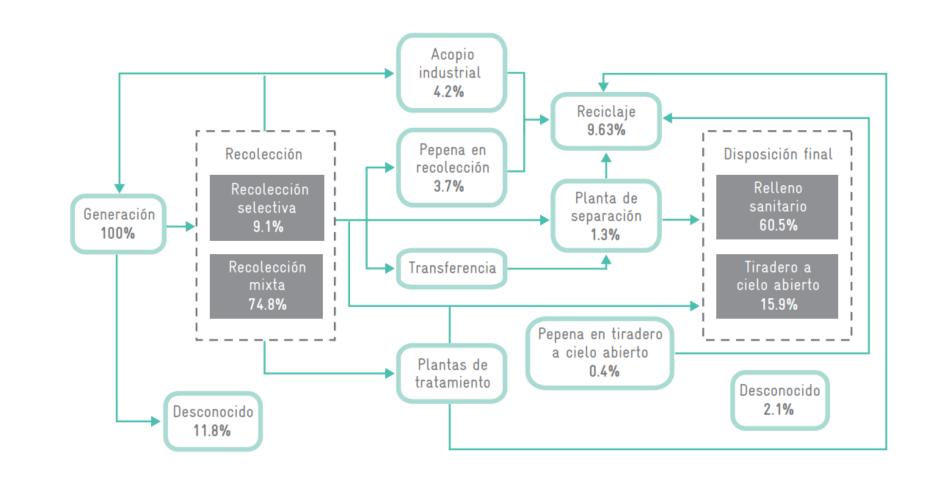
PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES MUNICIPALES EN MÉXICO CON DIGESTIÓN ANAEROBIA DE LODOS

En rojo: Plantas con digestores de lodos

En negro: Plantas potenciales para adoptar digestión anerobia de lodos

^{*} Plantas con aprovechamiento de biogás (eléctiricidad): 9

Aprovechamiento del biogás (cogeneración) PTAR Atotonilco, México

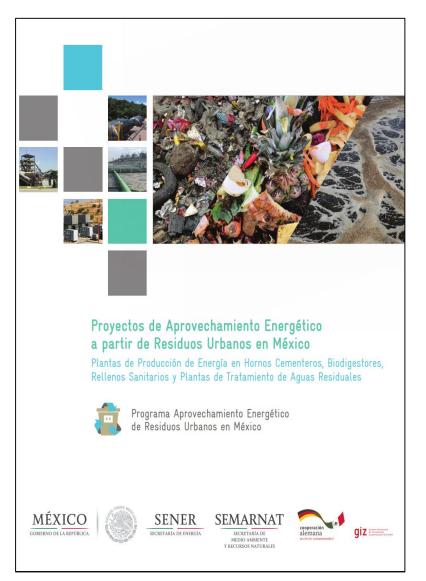

La 3er PTAR mundial en tamaño (35 m3/s, en estiaje. 42 m3/s en lluvias). Lodos activados convencionales (23 m3/s) y tratamiento fisicoquímico (12 m3/s) en estiaje. Digestión anaerobia de lodos (30 digestores de 13,000 m3 cada uno.

Producción de gas: 175,000 a 200,000 Nm3/d

Cogeneración (50 -60% de la demanda eléctrica). 12 motogeneradores de 2,700 kW c/u Lodo digerido a mono-relleno adyacente (100 ha)

MANEJO DE LOS RESIDUOS SÓLIDOS MUNICIPALES EN MÉXICO

GRÁFICO 1 Flujo y disposición final de los residuos en México durante el año 2012.



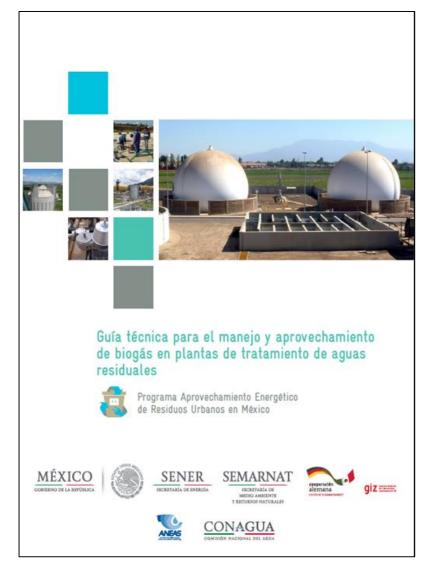

8 RELLENOS SANITARIOS EN MÉXICO CON APROVECHAMIENTO DE BIOGÁS (ELECTRICIDAD)

GRÁFICO 16 Mapa de rellenos sanitarios con aprovechamiento energético de biogás (capacidad instalada en 2015).

Dos documentos para apoyar el desarrollo de la industria del biogás en México Proyecto ENRES. Financiado por GIZ

GIZ, 2018 GIZ, 2017

CONSEJO NACIONAL DE BIOGÁS A.C.

Diciembre 2018

Constitución legal del Consejo Nacional de Biogás

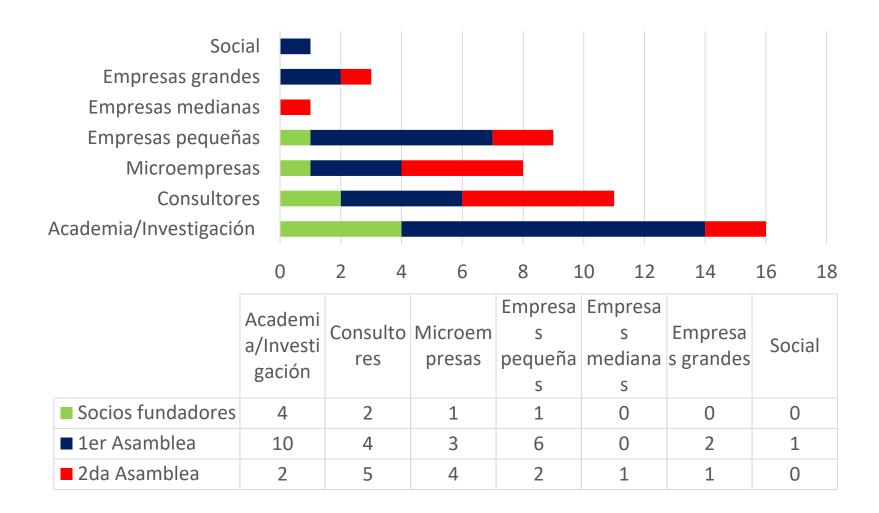
Febrero 2019

1er Asamblea General del CN Biogás

Asociados: 49

Padrinazgo por parte de la GIZ (Proyecto ENRES)

Objeto social


 Impulsar el desarrollo sustentable de la cadena de valor del sector biogás (.....) mediante la colaboración, el desarrollo de capacidades y soluciones técnicas, la comunicación e incidencia en las políticas públicas relacionadas.

La cadena de valor representada en la estructura

- Los socios, tanto personas físicas como morales, están agrupados en seis categorías.
- Cada una de ellas tiene un representante o vocal en el Comité Directivo.
- Las categorías son:
- 1) Academia,
- 2) Profesionales independiente o micro-empresas
- 3) Pequeñas empresas
- 4) Medianas empresas
- 5) Grandes empresas
- 6) Social (otras AC, ONGs, entre otros)

Diversidad de socios

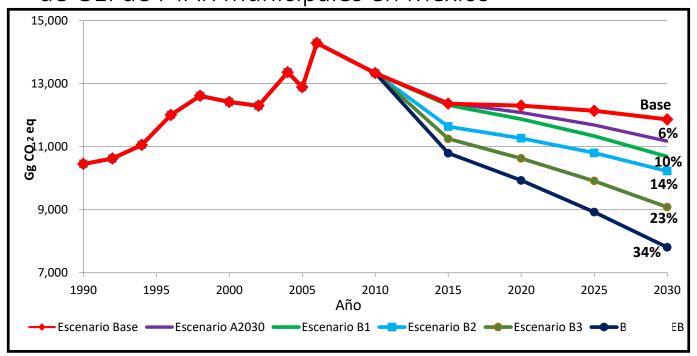
Más información...

Correo electrónico: cnbiogas@gmail.com

Página web:

www.cnbiogas.mx

Redes sociales @CNBiogas



Escenarios de Mejora para la reducción de emisiones de GEI de PTAR municipales en México

Noyola et al. (2016) Clean Air Soil Water, 44, 1091-1098

GRACIAS

